Tutorial 1

Fundamentals

CS/SWE 4/6TE3, CES 722/723 September 14, 2010

Review of derivatives, gradients and Hessians:

- The gradient extends the notion of derivative, the Hessian matrix - that of second derivative.
- Given a function f of n variables $x_{1}, x_{2}, \ldots, x_{n}$ we define the partial derivative relative to variable x_{i}, written as $\frac{\partial f}{\partial x_{i}}$, to be the derivative of f with respect to x_{i} treating all variables except x_{i} as constant. Let x denote the vector $\left(x_{1}, x_{2}, \ldots, x_{n}\right)^{T}$. With this notation, $f(x)=$ $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$.
- The gradient of f at x, written as $\nabla f(x)$, is

$$
\nabla f(x)=\left(\begin{array}{c}
\frac{\partial f}{\partial x_{1}} \\
\frac{\partial f}{\partial x_{2}} \\
\vdots \\
\frac{\partial f}{\partial x_{n}}
\end{array}\right)
$$

- The gradient vector $\nabla f(x)$ gives the direction of steepest ascent of the function f at point x. The gradient acts like the derivative in that small changes around a given point x^{*} can be estimated using the gradient (see first-order Taylor series expansion).
- Second partial derivatives $\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}$ are obtained from $f(x)$ by taking the derivative relative to x_{i} (this yields the first partial derivative $\frac{\partial f}{\partial x_{i}}$) and then by taking the derivative of $\frac{\partial f}{\partial x_{i}}$ relative to x_{j}. So, we can compute $\frac{\partial^{2} f}{\partial x_{1} \partial x_{1}}=\frac{\partial^{2} f}{\partial x_{1}^{2}}, \frac{\partial^{2} f}{\partial x_{1} \partial x_{2}}$ and so on. This values are arranged into the Hessian matrix:

$$
\nabla^{2} f(x)=\left(\begin{array}{cccc}
\frac{\partial^{2} f}{\partial x_{1}^{2}} & \frac{\partial^{2} f}{\partial x^{2} \partial x_{2}} & \cdots & \frac{\partial^{2} f}{\partial x^{2} \partial x_{n}} \\
\frac{\partial^{2} f}{\partial x_{2} \partial x_{1}} & \frac{\partial^{2} f}{\partial x_{2}^{2}} & \cdots & \frac{\partial^{2} f}{\partial x_{2} \partial x_{n}} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial^{2} f}{\partial x_{n} \partial x_{1}} & \frac{\partial^{2} f}{\partial x_{2} \partial x_{n}} & \cdots & \frac{\partial^{2} f}{\partial x_{n}^{2}}
\end{array}\right)
$$

The Hessian matrix is a symmetric matrix, that is $\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}=\frac{\partial^{2} f}{\partial x_{j} \partial x_{i}}$.

Computing gradients and Hessians:

Example

Compute the gradient and the Hessian of the function $f\left(x_{1}, x_{2}\right)=x_{1}^{2}-3 x_{1} x_{2}+x_{2}^{2}$ at the point $x=\left(x_{1}, x_{2}\right)^{T}=(1,1)^{T}$.

$$
\begin{gathered}
\nabla f(x)=\binom{\frac{\partial f}{\partial x_{1}}}{\frac{\partial f}{\partial x_{2}}}=\binom{2 x_{1}-3 x_{2}}{-3 x_{1}+2 x_{2}}=\binom{-1}{-1} \\
\nabla^{2} f(x)=\left(\begin{array}{cc}
\frac{\partial^{2} f}{\partial x_{1}^{2}} & \frac{\partial^{2} f}{\partial x_{1} \partial x_{2}} \\
\frac{\partial^{2} f}{\partial x_{2} \partial x_{1}} & \frac{\partial^{2} f}{\partial x_{2}^{2}}
\end{array}\right)=\left(\begin{array}{cc}
2 & -3 \\
-3 & 2
\end{array}\right)
\end{gathered}
$$

Taylor series expansion:

Second-order Taylor series expansion:

$$
f(x)=f\left(x_{0}\right)+\nabla f\left(x_{0}\right)^{T}\left(x-x_{0}\right)+\frac{1}{2}\left(x-x_{0}\right)^{T} \nabla^{2} f\left(x_{0}\right)\left(x-x_{0}\right)
$$

First-order Taylor series expansion:

$$
f(x)=f\left(x_{0}\right)+\nabla f\left(x_{0}\right)^{T}\left(x-x_{0}\right)
$$

Example

$f\left(x_{1}, x_{2}\right)=x_{1}^{2}-3 x_{1} x_{2}+x_{2}^{2}$, compute $f(1.01,1.01)$ using first- and second-order Taylor series expansion at the point $x_{0}=(1,1)^{T}$.
First-order Taylor series expansion:

$$
f(1.01,1.01)=f(1,1)+\nabla f(1,1)^{T}\binom{1.01-1}{1.01-1}=-1+(-1,-1)\binom{0.01}{0.01}=-1.02
$$

Second-order Taylor series expansion:

$$
\begin{aligned}
& f(1.01,1.01)=f(1,1)+\nabla f(1,1)^{T}\binom{0.01}{0.01}+\frac{1}{2}(0.01,0.01) \nabla^{2} f(1,1)\binom{0.01}{0.01}= \\
& \quad=-1+(-1,-1)\binom{0.01}{0.01}+\frac{1}{2}(0.01,0.01)\left(\begin{array}{cc}
2 & -3 \\
-3 & 2
\end{array}\right)\binom{0.01}{0.01}=-1.0201
\end{aligned}
$$

Convex functions:

Definition A function f is convex if for any $x^{1}, x^{2} \in C$ and $0 \leq \lambda \leq 1$

$$
f\left(\lambda x^{1}+(1-\lambda) x^{2}\right) \leq \lambda f\left(x^{1}\right)+(1-\lambda) f\left(x^{2}\right) .
$$

A square matrix A said to be positive definite (PD) if $x^{T} A x>0$ for all $x \neq 0$.
A square matrix A said to be positive semidefinite (PSD) if $x^{T} A x \geq 0$ for all x.
Hessian $\nabla f^{2}(x)$ is $\mathrm{PD} \Longrightarrow$ strictly convex function.
Hessian $\nabla f^{2}(x)$ is PSD \Longrightarrow convex function.
Gradient $\nabla f(\bar{x})=0$ and Hessian $\nabla f^{2}(\bar{x})$ is $\operatorname{PSD} \Longrightarrow \bar{x}$ is a minimum of the function f.
Gradient $\nabla f(\bar{x})=0$ and Hessian $\nabla f^{2}(\bar{x})$ is $\mathrm{PD} \Longrightarrow \bar{x}$ is a strict minimum of the function f.

Checking a matrix for PD and PSD:

Leading principal minors $D_{k}, k=1,2, \ldots, n$ of a matrix $A=\left(a_{i j}\right)_{[n \times n]}$ are defined as

$$
D_{k}=\operatorname{det}\left(\begin{array}{ccc}
a_{11} & \ldots & a_{1 k} \\
\vdots & & \vdots \\
a_{k 1} & \ldots & a_{k k}
\end{array}\right)
$$

A square matrix A is $\mathrm{PD} \Leftrightarrow D_{k}>0$ for all $k=1,2, \ldots, n$.

Example

Consider the function $f(x)=3 x_{1}^{2}+3 x_{2}^{2}+5 x_{3}^{2}-2 x_{1} x_{2}$. The corresponding Hessian matrix is

$$
\nabla^{2} f(x)=2\left(\begin{array}{ccc}
3 & -1 & 0 \\
-1 & 3 & 0 \\
0 & 0 & 5
\end{array}\right)
$$

Leading principal minors of $\nabla^{2} f(x)$ are

$$
\begin{aligned}
D_{1}= & 2 \cdot 3=6>0, \quad D_{2}=2 \cdot \operatorname{det}\left(\begin{array}{cc}
3 & -1 \\
-1 & 3
\end{array}\right)=2[3 \cdot 3-(-1)(-1)]=2 \cdot 8=16>0, \\
D_{3} & =2 \cdot \operatorname{det}\left(\begin{array}{ccc}
3 & -1 & 0 \\
-1 & 3 & 0 \\
0 & 0 & 5
\end{array}\right) \\
& =2([3 \cdot 3 \cdot 5+0 \cdot 0 \cdot(-1)+0 \cdot 0 \cdot(-1)]-[0 \cdot 0 \cdot 3+0 \cdot 0 \cdot 3+(-1) \cdot(-1) \cdot 5]) \\
& =2 \cdot 40=80>0
\end{aligned}
$$

So, the Hessian is positive definite (PD) and the function is strictly convex.

A square matrix A is $\mathrm{PSD} \Leftrightarrow$ all the principal minors of A are ≥ 0.
The principal minor is

$$
\operatorname{det}\left(\begin{array}{ccc}
a_{i_{1} i_{1}} & \ldots & a_{i_{1} i_{p}} \\
\vdots & & \vdots \\
a_{i_{p} i_{1}} & \ldots & a_{i_{p} i_{p}}
\end{array}\right), \text { where } 1 \leq i_{1}<i_{2}<\ldots<i_{p} \leq n, p \leq n .
$$

