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Review of derivatives, gradients and Hessians:
The gradient extends the notion of derivative, the Hessian matrix — that of second derivative.

Given a function f of n variables x1,xo,...,2x, we define the partial derivative relative to
variable x;, written as %, to be the derivative of f with respect to x; treating all variables

except z; as constant. Let x denote the vector (x1,xs,...,2,)". With this notation, f(z) =

fz1,29,...,xp).

The gradient of f at z, written as V f(z), is
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The gradient vector V f(z) gives the direction of steepest ascent of the function f at point

x. The gradient acts like the derivative in that small changes around a given point z* can be

estimated using the gradient (see first-order Taylor series expansion).
Second partial derivatives %ng are obtained from f(z) by taking the derivative relative to
x; (this yields the first partial derivative g—i) and then by taking the derivative of g—i relative

. ?f _o*f _9f ; ;
to z;. So, we can compute gy = 923 Duidms and so on. This values are arranged into the

Hessian matrix:
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The Hessian matrix is a symmetric matrix, that is d:0z; — Oz,03;"



Computing gradients and Hessians:

Example

Compute the gradient and the Hessian of the function f(z1,72) = 22 — 37122 + 23 at the point

= (x1,20)" = (1,1)7T.

we= (8 )= (50%) - (1)

o — 2 3
2 0x10 -
Vi@ = | g eyt | = < 3 2 )
8x28m1 8_1‘%

Taylor series expansion:

Second-order Taylor series expansion:

F(x) = f(ao) + VT (@0)" (x — 20) + 3 (2 — 20) V2 o) — w0)

First-order Taylor series expansion:

f(x) = flzo) + V f(w0)" (2 — 20)

Example

f(w1,29) = 22 — 3w129 + 23, compute f(1.01,1.01) using first- and second-order Taylor series
expansion at the point zq = (1,1)7.

First-order Taylor series expansion:

F(1LO1,1.01) = £(1,1) +Vf(1,1)T< 181 T ) = 14 (-1,-1) < 881 ) — 1.0

Second-order Taylor series expansion:

0.01 1 0.01
F(1.01,1.01) = f(1,1) + Vf(1,1)7 < 001 > +5(0.01,0.00)V*£(1,1) < 0.01 > -

0.01 1 2 -3 0.01
=1+ (-1,-1) ( 0.01 > +§(0.01,0.01)< 3 9 > < 0.01 > = —1.0201




Convex functions:

Definition A function f is convex if for any z', 22 € Cand 0 < A < 1

FOa! + (1= N)2?) < Af(ah) + (1= N f(2?).

A square matrix A said to be positive definite (PD) if 7 Az > 0 for all  # 0.
A square matrix A said to be positive semidefinite (PSD) if 27 Az > 0 for all x.
Hessian V f2(z) is PD = strictly convex function.

Hessian V f2(z) is PSD = convex function.

Gradient Vf(Z) = 0 and Hessian V f2(z) is PSD = Z is a minimum of the function f.

(7)
Gradient Vf(Z) = 0 and Hessian V f2(z) is PD = Z is a strict minimum of the function f.

Checking a matrix for PD and PSD:

Leading principal minors Dy, k =1,2,...,n of a matrix A = (a;j)[nxn) are defined as
alr ... Qg
Dy, = det
ak1  -.. Qg

A square matrix Ais PD < D >0 forall k =1,2,...,n.

Example

Consider the function f(z) = 3x? + 323 + 522 — 22129. The corresponding Hessian matrix is
Vif(x)=2| -1

Leading principal minors of V2f(x) are

DI =2.3=6>0, D2:2-det< ° _31>:2[3-3—(—1)(—1)]:2-8:16>0,

3 -1 0
Dy = 2-det| -1 3 0
0 0 5
= 2([3-3-540-0-(=1)+0-0-(=1)]—=[0-0-34+0-0-3+ (—1)-(=1)-5))
= 2.40=80>0

So, the Hessian is positive definite (PD) and the function is strictly convex.




A square matrix A is PSD < all the principal minors of A are > 0.
The principal minor is
iy - am-p
det : : ,where 1 <1 <ipg < ... <ip<mn, p<n.

aipil N a,-p,-p



