
Tutorial 1

Fundamentals

CS/SWE 4/6TE3, CES 722/723 September 14, 2010

Review of derivatives, gradients and Hessians:

• The gradient extends the notion of derivative, the Hessian matrix – that of second derivative.

• Given a function f of n variables x1, x2, . . . , xn we define the partial derivative relative to

variable xi, written as ∂f
∂xi

, to be the derivative of f with respect to xi treating all variables

except xi as constant. Let x denote the vector (x1, x2, . . . , xn)
T . With this notation, f(x) =

f(x1, x2, . . . , xn).

• The gradient of f at x, written as ∇f(x), is

∇f(x) =













∂f
∂x1

∂f
∂x2

...
∂f
∂xn













• The gradient vector ∇f(x) gives the direction of steepest ascent of the function f at point

x. The gradient acts like the derivative in that small changes around a given point x∗ can be

estimated using the gradient (see first-order Taylor series expansion).

• Second partial derivatives ∂2f
∂xi∂xj

are obtained from f(x) by taking the derivative relative to

xi (this yields the first partial derivative
∂f
∂xi

) and then by taking the derivative of ∂f
∂xi

relative

to xj . So, we can compute ∂2f
∂x1∂x1

= ∂2f

∂x2

1

, ∂2f
∂x1∂x2

and so on. This values are arranged into the

Hessian matrix:

∇2f(x) =















∂2f

∂x2

1

∂2f
∂x1∂x2

. . . ∂2f
∂x1∂xn

∂2f
∂x2∂x1

∂2f

∂x2

2

. . . ∂2f
∂x2∂xn

...
...

. . .
...

∂2f
∂xn∂x1

∂2f
∂x2∂xn

. . . ∂2f
∂x2

n















The Hessian matrix is a symmetric matrix, that is ∂2f
∂xi∂xj

= ∂2f
∂xj∂xi

.
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Computing gradients and Hessians:

Example

Compute the gradient and the Hessian of the function f(x1, x2) = x21 − 3x1x2 + x22 at the point

x = (x1, x2)
T = (1, 1)T .

∇f(x) =

(

∂f
∂x1

∂f
∂x2

)

=

(

2x1 − 3x2
−3x1 + 2x2

)

=

(

−1
−1

)

∇2f(x) =





∂2f

∂x2

1

∂2f
∂x1∂x2

∂2f
∂x2∂x1

∂2f

∂x2

2



 =

(

2 −3
−3 2

)

Taylor series expansion:

Second-order Taylor series expansion:

f(x) = f(x0) +∇f(x0)
T (x− x0) +

1

2
(x− x0)

T∇2f(x0)(x− x0)

First-order Taylor series expansion:

f(x) = f(x0) +∇f(x0)
T (x− x0)

Example

f(x1, x2) = x21 − 3x1x2 + x22, compute f(1.01, 1.01) using first- and second-order Taylor series

expansion at the point x0 = (1, 1)T .

First-order Taylor series expansion:

f(1.01, 1.01) = f(1, 1) +∇f(1, 1)T
(

1.01 − 1
1.01 − 1

)

= −1 + (−1,−1)

(

0.01
0.01

)

= −1.02

Second-order Taylor series expansion:

f(1.01, 1.01) = f(1, 1) +∇f(1, 1)T
(

0.01
0.01

)

+
1

2
(0.01, 0.01)∇2f(1, 1)

(

0.01
0.01

)

=

= −1 + (−1,−1)

(

0.01
0.01

)

+
1

2
(0.01, 0.01)

(

2 −3
−3 2

)(

0.01
0.01

)

= −1.0201
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Convex functions:

Definition A function f is convex if for any x1, x2 ∈ C and 0 ≤ λ ≤ 1

f(λx1 + (1− λ)x2) ≤ λf(x1) + (1− λ)f(x2).

A square matrix A said to be positive definite (PD) if xTAx > 0 for all x 6= 0.

A square matrix A said to be positive semidefinite (PSD) if xTAx ≥ 0 for all x.

Hessian ∇f2(x) is PD =⇒ strictly convex function.

Hessian ∇f2(x) is PSD =⇒ convex function.

Gradient ∇f(x̄) = 0 and Hessian ∇f2(x̄) is PSD =⇒ x̄ is a minimum of the function f .

Gradient ∇f(x̄) = 0 and Hessian ∇f2(x̄) is PD =⇒ x̄ is a strict minimum of the function f .

Checking a matrix for PD and PSD:

Leading principal minors Dk, k = 1, 2, . . . , n of a matrix A = (aij)[n×n] are defined as

Dk = det







a11 . . . a1k
...

...
ak1 . . . akk







A square matrix A is PD ⇔ Dk > 0 for all k = 1, 2, . . . , n.

Example

Consider the function f(x) = 3x21 + 3x22 + 5x23 − 2x1x2. The corresponding Hessian matrix is

∇2f(x) = 2





3 −1 0
−1 3 0
0 0 5





Leading principal minors of ∇2f(x) are

D1 = 2 · 3 = 6 > 0, D2 = 2 · det

(

3 −1
−1 3

)

= 2[3 · 3− (−1)(−1)] = 2 · 8 = 16 > 0,

D3 = 2 · det





3 −1 0
−1 3 0
0 0 5





= 2([3 · 3 · 5 + 0 · 0 · (−1) + 0 · 0 · (−1)]− [0 · 0 · 3 + 0 · 0 · 3 + (−1) · (−1) · 5])
= 2 · 40 = 80 > 0

So, the Hessian is positive definite (PD) and the function is strictly convex.
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A square matrix A is PSD ⇔ all the principal minors of A are ≥ 0.

The principal minor is

det







ai1i1 . . . ai1ip
...

...
aipi1 . . . aipip






,where 1 ≤ i1 < i2 < . . . < ip ≤ n, p ≤ n.
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